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Abstract. This paper describes a method for seamless enlargement or
editing of difficult colour textures containing simultaneously both reg-
ular periodic and stochastic components. Such textures cannot be suc-
cessfully modelled using neither simple tiling nor using purely stochastic
models. However these textures are often required for realistic appear-
ance visualisation of many man-made environments and for some natural
scenes as well. The principle of our near-regular texture synthesis and
editing method is to automatically recognise and separate periodic and
random components of the corresponding texture. Each of these compo-
nents is subsequently modelled using its optimal method. The regular
texture part is modelled using our roller method, while the random part
is synthesised from its estimated exceptionally efficient Markov random
field based representation. Both independently enlarged texture compo-
nents from the original measured texture are combined in the resulting
synthetic near-regular texture. In the editing application both enlarged
texture components can be from two different textures. The presented
texture synthesis method allows large texture compression and it is si-
multaneously extremely fast due to complete separation of the analytical
step of the algorithm from the texture synthesis part. The method is uni-
versal and easily viable in a graphical hardware for purpose of real-time
rendering of any type of near-regular static textures.

1 Introduction

Physically correct virtual models require object surfaces covered with realistic
nature-like colour textures to enhance realism in virtual scenes. Satisfactory mod-
els require not only complex 3D shapes accorded with the captured scene, but also
realistic surface materials visualisation. This will significantly increase the realism
of the synthetic generated scene. We define near-regular textures as textures that
contain global, possibly imperfect, regular structures as well as irregular stochas-
tic structures simultaneously. This is more ambitious definition than to view [1] a
near-regular textures as a statistical distortion of a regular texture. Near regular
textures are difficult to synthesise, however, these textures are ubiquitous in man-
made environments such as buildings, wallpapers, floors, tiles, fabric but even
some fully natural textures such as honeycomb, sand dunes or waves belong to
this texture category. These textures can be modelled in simplified smooth or more
precise rough (also referred as the bidirectional texture function - BTF [2]) repre-
sentation. The rough textures do not obey the Lambert law and their reflectance
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is illumination and view angle dependent. Both types of such near-regular texture
representations occur in virtual scenes models. The purpose of any synthetic tex-
ture approach is to reproduce and enlarge a given measured texture image so that
ideally both natural and synthetic texture will be visually indiscernible. The re-
lated texture modelling approaches may be divided primarily into sampling and
model-based-analysis and synthesis, but no ideal texture modelling method ex-
ists. Each of the existing approaches or texture models has its advantages and
limitations simultaneously and it is applicable for a restricted subset of possible
textures only. Model-based texture synthesis [3,4,5] requires non-standard multi-
dimensional (3D for static colour textures or even 7D for static BTFs) models.
Such models are non trivial and they suffer with several unsolved problems which
have to be circumvented (e.g. optimal parameters estimation, efficient synthesis,
stability). Model-based methods are also often too difficult to be implemented in
contemporary graphical card processors. Sampling approaches [6, 7] rely on so-
phisticated sampling from real texture measurements. Sampling methods require
to store original texture sample, thus they cannot come near the large compression
ratio of the model-based methods.

Neither model-based or simple sampling algorithms alone can satisfactorily
solve the difficult problem of near-regular texture modelling. Existing methods
[1, 8, 9, 10, 11, 12, 13, 14, 15] usually try to overcome this problem by user assisted
modelling of the regular structures and then rely on regular tiling. However Lin et
al. [11] experimentally observed that several of these general purpose sampling al-
gorithms fail to preserve the structural regularity on more than 40% of their tested
regular textures. Tiling-based synthesis algorithms [9,12] identify the underlying
lattice of the input texture either automatically or by user selection of two trans-
lation vectors and use slightly modified image quilting method [7] for synthesis.
Texture replacement method [10] can replace selected regular texture while pre-
serving its lighting using a Markov random field model and slow iterative Markov
chain Monte Carlo solution. Another interactive tiling method [1] requires user as-
sistance to identify a coarse texture lattice structure. The method [15] separates
the global regular structure from the irregular structure using fractional Fourier
analysis similarly to our method. However the synthesis is performed by generat-
ing a fractional Fourier texture mask from the extracted global regular structure
which is used to guide pixelwise and time consuming sample-based synthesis. All
mentioned near-regular texture modelling methods suffer with drawbacks inher-
ent to the tiling approach. They do not allow texture editing, near-regular BTF
textures, unmeasured textures applications and have very limited compression ra-
tio. Tiling approaches cannot eliminate visible repetitions even if they use several
tiles which are randomly combined such as [2].

The presented fully automatic method proposes to combine advantages of
both basic texture modelling approaches by factoring a texture into factors that
benefit best from each of two basic different modelling concepts. The principle
of the method is to separate texture regular and stochastic parts, to enlarge
both parts separately and to combine these results (texture enlargement) or re-
sults from several different textures (texture editing) into the required resulting
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texture. The proposed solution is not only fully automatic, very fast due to strict
separation of the analytical and very efficient synthesis steps, but it also allows
significant data compression. Due to its stochastic modelling it completely elim-
inates visible repetitions (contrary to all mentioned tiling approaches) because
there are never used two identical tiles in a scene. Finally the method can be
easily used to near-regular texture editing by either combining texture parts
from different measurement or by changing stochastic model parameters.

2 Periodic and Non-periodic Texture Separation

The prerequisite for the method is that near-regular input textures have distinct
amplitude spectrum parts for both periodic and random components. Otherwise
the method, schematised in Fig.1 and outlined in the following sections, would
not be able to separate both texture parts. Periodic and non-periodic texture
part are detected in the simplified monospectral texture space. The input colour
texture is spectrally transformed using the principal component analysis (PCA).
Let the digitised colour texture Ȳ is indexed on a finite rectangular three-
dimensional M × N × d underlying lattice I, where M × N is the image size
and d is the number of spectral bands. The original centered data space Ỹ is
transformed into a new data space with PCA coordinate axes Y . This new basis
vectors are the eigenvectors of the d×d second-order statistical moments matrix
Φ = E{Ỹr,•Ỹ T

r,•} where d is the number of spectral bands and the multiindex r
has two components r = [r1, r2] (the row and column index). The projection of
random vector Ỹr,• (the notation • has the meaning of all possible values of the
corresponding index) onto the PCA coordinate system uses the transformation
matrix T = [uT

1 , . . . , uT
d ]T which has single rows uj that are eigenvectors of

the matrix Φ: Ȳr,• = T Ỹr,• . The periodic texture part (Fig. 2) is detected
on the most informative transformed monospectral factor, which corresponds to
the largest Φ eigenvalue.

2.1 Textural Periodicity Direction

Near-regular measured textures can have arbitrary periodicity directions (Fig.1-
top right), not necessarily simple axis aligned periodicity. The periodicity in two
directions is detected from the spatial correlation field restricted with the help of
Fourier amplitude spectrum (Fig.1-right). The method finds two largest Fourier
amplitude spectrum coefficients provided that they do not represent parallel
directions. Tolerance sectors (Fig.1- right), which accommodate for possible lo-
calisation imprecision of local amplitude spectra maxima, are specified and for all
their indices the corresponding spatial correlations are evaluated. Local spatial
correlation field maxima, larger than a threshold, are detected and the minimal
periodicity maximum is selected. Detected periodicity (δh∗

, δv∗
) and its direc-

tion allows to rotate measured texture to have axis aligned periodicity which
simplifies further analytical steps. Detected periodicity and directions specify a
rhomboid which contains the largest periodic part from the input texture. The
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Fig. 1. Presented method overall schema, right from above - original measured texture,
its amplitude spectrum, detected spatial correlation sectors, and the resulting toroidal
tile (bottom)

rhomboid is further inscribed into the M̂×N̂ rectangle which is cut out from the
input texture. Although the double toroidal tile can be searched directly from
the rhomboid the rectangular shape restriction simplifies this detection step.

2.2 Amplitude Spectrum Filter

The texture cutout is re-sampled to the lattice size of the power of two required
by the fast Fourier transformation (FFT) based filter Ṁ ≥ M̂ , Ṁ = 2i ,
Ṅ ≥ N̂ , Ṅ = 2j , where i, j are minimum possible values. Let Amax is
the Fourier amplitude spectrum maximum coefficient detected from the Fourier
amplitude spectrum (Fig.1- right). The filter removes such coefficients, for which
any of the following conditions holds: Ar < k Amax , Ar /∈ M ∧ r /∈ Im , where
M is a set of amplitude spectrum local maxima, k ∈ 〈0; 1〉 is a parameter and
Im is a contextual neighbourhood (we use the hierarchical neighbourhood of the
first or the second order) of such a local maximum. Applying the inverse FFT
and re-sampling the filtered tile back to the original M̂ × N̂ size we get the
filtered cutout Ẏ (Fig. 2- even images). FFT can be alternatively replaced by
the rotated FFT from the section 2.1 but this option would introduce sampling
errors into the filter. The filtered tile Ẏ is binarized (Ŷ ) using a threshold
tbin ∈ 〈0; 1〉. One label determines the periodic texture part and the other the
stochastic part. To find the labels correspondence to both periodical and non-
periodical parts of the original texture Fig.2 - odd img., the binary image Ŷ is
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Fig. 2. Near-regular measured textures (odd) and their detected periodic parts

tested for periodicity δh∗
, δv∗

. The majority label complying to the periodicity
test denotes the original texture periodic sites (Fig.2- even img.). When both
periodic and stochastic parts are separated they can be independently modelled
and enlarged to any required size as it is detailed in two following sections. The
required near-regular texture is simple composite of both synthetic parts.

3 Periodic Texture Modelling

The regular part of the texture is enlarged using a simplification of our previously
published [16] method. The roller method [2,16] is based on the overlapping tiling
and subsequent minimum error boundary cut. One or several optimal double
toroidal texture patches are seamlessly repeated during the synthesis step. This
automatic method starts with the minimal tile size detection which is limited by
the size of texture measurements, the number of toroidal tiles we are looking for
and the sample spatial frequency content. The optimal horizontal and vertical
edges cuts are searched using the dynamic programming method. These optimal
vertical and horizontal cuts constitute a toroidal tile as is demonstrated on the
Fig.1 - bottom right. Some textures with dominant irregular structures cannot
be modelled by simple single tile repetition without clearly visible and visually
disturbing regular artefact. Such textures exploit multiple toroidal tiles which
share identical border but differ in their interior. Finally, the periodic texture
enhancement is simple repetition of one or several randomly alternating double
toroidal tiles in both directions until the required texture size is generated.

4 Random Texture Modelling

The random part of a texture is synthesised from the original input texture from
where the detected periodic component was removed as described in section 2.
If the stochastic texture patches are too small (few hundred pixels area) to
reliably learn the random field model statistics, we replace occluded stochastic
texture areas by using a modification of the image quilting algorithm [7]. The
random part of the texture is synthesised using an adaptive probabilistic spatial
model, a multiresolution 3D causal autoregressive model (CAR) [17], which is
an exceptionally efficient type from the Markov random field (MRF) family of
models. This model allows extreme compression (few tens of parameters to be
stored only) and can be speedily evaluated directly in a procedural form to
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seamlessly fill an infinite texture space. The resulting near-regular texture is
simple combination of both regular and stochastic synthesised factors.

5 Results

We have tested the presented method on near-regular textures from our exten-
sive texture database, which currently contains over 1000 colour textures. Tested
near-regular textures were either man-made such as two textures on Fig.4 or
combinations of man-made structures with natural background (Fig.3) such as
grass, wood, plants, snow, sand, etc. Both part of modelling were separately

Fig. 3. Near-regular textures and their synthesis (right), image quilting [7] results
(bottom row)
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Fig. 4. Near-regular texture editing. Measured textures (three leftmost) and edited
textures (three rightmost).

successfully tested on hundreds of colour or BTF textures with results reported
elsewhere ( [16]). Such unusually extensive testing was possible due to simplicity
and efficiency of both crucial parts of the algorithm and it allowed us to get
insight into the algorithm properties. The method is even capable to synthe-
sise some near-regular textures combined from two distinctive types of regular
structures provided they can be adequately separated in the Fourier domain.
Resulting textures are mostly surprisingly good for such a fully automatic fast
algorithm. Textures in Fig.3 were synthesised in real time (≈ 1 [s]) while us-
ing the image quilting method [7] the synthesis took 90 [s] on the same PC.
Obviously there is no optimal texture modelling method and also the presented
method fails on some near-regular textures with similar (and thus faultlessly un-
separable) amplitude spectrum parts of both periodic and random components.

6 Conclusions

Our test results on available near-regular texture data are encouraging. The
overall method is fully automatic and extremely fast due to strict separation of
the analytical and very efficient synthesis steps. The regular part modelling is
easily implementable even in the graphical processing unit. The method offers
larger compression ratio than alternative tiling methods for transmission or stor-
ing texture information due to the periodic part modelling approach. The MRF
based random part model can reach a huge compression ratio itself, hence its
storage requirements are negligible, and simultaneously eliminates visible rep-
etitions typical and unavoidable for tiling approaches. The overall method has
negligible computation complexity for the periodic model and exceptionally effi-
cient computational model for the random part as well. The method’s extension
for alternative texture types, such as BTF textures or some other spatial data
such as the reflectance models parametric spaces is straightforward. Finally, the
method can be easily used to near-regular texture editing by either combin-
ing texture parts from different measurement or by changing stochastic model
parameters.
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